Pyrolitic oven – What’s Pyrolysis ?

Pyrolysis is a thermochemical decomposition of organic material at elevated temperatures without the participation of oxygen. It involves the simultaneous change of chemical composition and physical phase, and is irreversible. The word is coined from the Greek-derived elements pyro “fire” and lysis “separating”.

Pyrolysis is a case of thermolysis, and is most commonly used for organic materials, being, therefore, one of the processes involved in charring. The pyrolysis of wood, which starts at 200–300 °C (390–570 °F),[1] occurs for example in fires where solid fuels are burning or when vegetation comes into contact with lava in volcanic eruptions. In general, pyrolysis of organic substances produces gas and liquid products and leaves a solid residue richer in carbon content, char. Extreme pyrolysis, which leaves mostly carbon as the residue, is called carbonization.

The process is used heavily in the chemical industry, for example, to produce charcoal, activated carbon, methanol, and other chemicals from wood, to convert ethylene dichloride into vinyl chloride to make PVC, to produce coke from coal, to convert biomass into syngas and biochar, to turn waste into safely disposable substances, and for transforming medium-weight hydrocarbons from oil into lighter ones like gasoline. These specialized uses of pyrolysis may be called various names, such as dry distillation, destructive distillation, or cracking.

Pyrolysis also plays an important role in several cooking procedures, such as baking, frying, grilling, and caramelizing. In addition, it is a tool of chemical analysis, for example, in mass spectrometry and in carbon-14 dating. Indeed, many important chemical substances, such as phosphorus and sulfuric acid, were first obtained by this process. Pyrolysis has been assumed to take place during catagenesis, the conversion of buried organic matter to fossil fuels. It is also the basis of pyrography. In their embalming process, the ancient Egyptians used a mixture of substances, including methanol, which they obtained from the pyrolysis of wood.

Pyrolysis differs from other high-temperature processes like combustion and hydrolysis in that it usually does not involve reactions with oxygen, water, or any other reagents. In practice, it is not possible to achieve a completely oxygen-free atmosphere. Because some oxygen is present in any pyrolysis system, a small amount of oxidation occurs.

The term has also been applied to the decomposition of organic material in the presence of superheated water or steam (hydrous pyrolysis), for example, in the steam cracking of oil.

 

Pyrolysis occurs whenever food is exposed to high enough temperatures in a dry environment, such as roasting, baking, toasting, or grilling. It is the chemical process responsible for the formation of the golden-brown crust in foods prepared by those methods.

In normal cooking, the main food components that undergo pyrolysis are carbohydrates (including sugars, starch, and fibre) and proteins. (See: Maillard reaction.) Pyrolysis of fats requires a much higher temperature, and, since it produces toxic and flammable products (such as acrolein), it is, in general, avoided in normal cooking. It may occur, however, when grilling fatty meats over hot coals.

Even though cooking is normally carried out in air, the temperatures and environmental conditions are such that there is little or no combustion of the original substances or their decomposition products. In particular, the pyrolysis of proteins and carbohydrates begins at temperatures much lower than the ignition temperature of the solid residue, and the volatile subproducts are too diluted in air to ignite. (In flambé dishes, the flame is due mostly to combustion of the alcohol, while the crust is formed by pyrolysis as in baking.)

Pyrolysis of carbohydrates and proteins requires temperatures substantially higher than 100 °C (212 °F), so pyrolysis does not occur as long as free water is present, e.g., in boiling food — not even in a pressure cooker. When heated in the presence of water, carbohydrates and proteins suffer gradual hydrolysis rather than pyrolysis. Indeed, for most foods, pyrolysis is usually confined to the outer layers of food, and begins only after those layers have dried out.

Food pyrolysis temperatures are, however, lower than the boiling point of lipids, so pyrolysis occurs when frying in vegetable oil or suet, or basting meat in its own fat.

Pyrolysis also plays an essential role in the production of barley tea, coffee, and roasted nuts such as peanuts and almonds. As these consist mostly of dry materials, the process of pyrolysis is not limited to the outermost layers but extends throughout the materials. In all these cases, pyrolysis creates or releases many of the substances that contribute to the flavor, color, and biological properties of the final product. It may also destroy some substances that are toxic, unpleasant in taste, or those that may contribute to spoilage.

Controlled pyrolysis of sugars starting at 170 °C (338 °F) produces caramel, a beige to brown water-soluble product widely used in confectionery and (in the form of caramel coloring) as a coloring agent for soft drinks and other industrialized food products.

Solid residue from the pyrolysis of spilled and splattered food creates the brown-black encrustation often seen on cooking vessels, stove tops, and the interior surfaces of ovens.

2 thoughts on “Pyrolitic oven – What’s Pyrolysis ?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s